Special Session III

Special Session Basic Information:

专栏题目

中文:新型电力系统能量管理与风险防控

Session Title

英文: Energy Management and Risk Mitigation in New Power Systems

专栏介绍和征稿主题 Introduction and topics

中文:

在全球能源转型与"双碳"目标驱动下,构建新型电力系统已成为国际共识。为应对高比例可再生能源接入带来的强不确定性、多时间尺度耦合及复杂风险传播等挑战,本专题聚焦新型电力系统能量管理与风险防控,搭建交流平台,重点探讨:新能源电力预测与多源协同优化调度技术,涵盖风光功率预测、虚拟电厂聚合调控、源网荷储动态匹配等前沿方向;新型电力系统多维度风险评估方法,研究极端天气、市场波动、网络安全等复合风险的情景构建与量化分析;人工智能与数字孪生等新方法、新技术应用,探索基于深度强化学习等新方法、新技术的实时决策系统与全息仿真平台构建。为此,我们设立此专题,征集和探讨新型电力系统能量管理与风险防控的最新进展和应用,推动能源、信息、系统工程等领域的深度交叉融合,为构建安全、经济、低碳的新型电力系统提供理论支撑与实践参考。

征稿主题包括但不限于:

- 1. 新能源电力预测与多源协同优化调度技术
- 2. 新型电力系统能量管理方法
- 3. 新型电力系统可靠性建模方法
- 4. 新型电力系统风险评估与防控方法

英文:

Driven by the global energy transition and the "Dual-Carbon" goals, the construction of new power systems has become an international consensus. To address challenges posed by high-penetration renewable energy integration-including strong uncertainties, multi-timescale coupling, and complex risk propagation—this special session focuses on energy management and risk mitigation for new power systems. It aims to foster interdisciplinary dialogue and explore: Renewable Energy Forecasting and Multi-Source Collaborative Optimization Technologies, covering cutting-edge areas such as wind/solar power prediction, virtual power plant (VPP) aggregation control, and dynamic coordination of "source-grid-load-storage" systems; Multi-Dimensional Risk Assessment Methodologies, including scenario construction and quantitative analysis of compound risks (e.g., extreme weather, market volatility, and cyber threats); Applications of Emerging Technologies, such as artificial intelligence (AI) and digital twins, to develop real-time decision-making systems (e.g., deep reinforcement learning-based frameworks) and holographic simulation platforms.

This session calls for contributions on the latest advances in energy management and risk mitigation for new power systems, promoting cross-disciplinary integration among energy, informatics, and systems engineering. It seeks to provide theoretical foundations and practical insights for building secure, economical, and low-carbon power systems.

The topics of interest include, but are not limited to:

- 1) 1.Renewable Energy Forecasting and Multi-Source Collaborative Optimization Technologies
- 2) 2.Energy Management Methodologies for New Power Systems
- 3) 3.Reliability Modeling for New Power Systems
- 4) 4.Risk Evaluation and Mitigation Methodologies for New Power Systems

Special Session Chair(s):

姓名 Name	Xueying Yu (余雪莹)
称谓 Prefix	
部门 Department	
单位 Organization	Sichuan University(四川大学)
城市/地区 City/Region	Chengdu Sichuan (四川成都)

姓名 Name	Tao Wu(吴涛)
称谓	
Prefix	
部门	
Department	
单位	Chongqing University(重庆大学)
Organization	Chongqing oniversity(重人人子)
城市/地区	Chengdu Sichuan (四川成都)
City/Region	